Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Subcellular compartmentalization of the plant antioxidant system: an integrated overview.

Identifieur interne : 000012 ( Main/Exploration ); précédent : 000011; suivant : 000013

Subcellular compartmentalization of the plant antioxidant system: an integrated overview.

Auteurs : Aleksandr Bobrovskikh [Russie] ; Ulyana Zubairova [Russie] ; Alexey Kolodkin [Pays-Bas, Luxembourg (pays)] ; Alexey Doroshkov [Russie]

Source :

RBID : pubmed:32742779

Abstract

The antioxidant system (AOS) maintains the optimal concentration of reactive oxygen species (ROS) in a cell and protects it against oxidative stress. In plants, the AOS consists of seven main classes of antioxidant enzymes, low-molecular antioxidants (e.g., ascorbate, glutathione, and their oxidized forms) and thioredoxin/glutaredoxin systems which can serve as reducing agents for antioxidant enzymes. The number of genes encoding AOS enzymes varies between classes, and same class enzymes encoded by different gene copies may have different subcellular localizations, functional loads and modes of evolution. These facts hereafter reinforce the complex nature of AOS regulation and functioning. Further studies can describe new trends in the behavior and functioning of systems components, and provide new fundamental knowledge about systems regulation. The system is revealed to have a lot of interactions and interplay pathways between its components at the subcellular level (antioxidants, enzymes, ROS level, and hormonal and transcriptional regulation). These facts should be taken into account in further studies during the AOS modeling by describing the main pathways of generating and utilizing ROS, as well as the associated signaling processes and regulation of the system on cellular and organelle levels, which is a complicated and ambitious task. Another objective for studying the phenomenon of the AOS is related to the influence of cell dynamics and circadian rhythms on it. Therefore, the AOS requires an integrated and multi-level approach to study. We focused this review on the existing scientific background and experimental data used for the systems biology research of the plant AOS.

DOI: 10.7717/peerj.9451
PubMed: 32742779
PubMed Central: PMC7369019


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Subcellular compartmentalization of the plant antioxidant system: an integrated overview.</title>
<author>
<name sortKey="Bobrovskikh, Aleksandr" sort="Bobrovskikh, Aleksandr" uniqKey="Bobrovskikh A" first="Aleksandr" last="Bobrovskikh">Aleksandr Bobrovskikh</name>
<affiliation wicri:level="1">
<nlm:affiliation>The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation.</nlm:affiliation>
<country xml:lang="fr">Russie</country>
<wicri:regionArea>The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk</wicri:regionArea>
<wicri:noRegion>Novosibirsk</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zubairova, Ulyana" sort="Zubairova, Ulyana" uniqKey="Zubairova U" first="Ulyana" last="Zubairova">Ulyana Zubairova</name>
<affiliation wicri:level="1">
<nlm:affiliation>The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation.</nlm:affiliation>
<country xml:lang="fr">Russie</country>
<wicri:regionArea>The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk</wicri:regionArea>
<wicri:noRegion>Novosibirsk</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Novosibirsk State University, Novosibirsk, Russian Federation.</nlm:affiliation>
<country xml:lang="fr">Russie</country>
<wicri:regionArea>Novosibirsk State University, Novosibirsk</wicri:regionArea>
<wicri:noRegion>Novosibirsk</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kolodkin, Alexey" sort="Kolodkin, Alexey" uniqKey="Kolodkin A" first="Alexey" last="Kolodkin">Alexey Kolodkin</name>
<affiliation wicri:level="4">
<nlm:affiliation>University of Amsterdam, Amsterdam, Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>University of Amsterdam, Amsterdam</wicri:regionArea>
<placeName>
<settlement type="city">Amsterdam</settlement>
<region nuts="2" type="province">Hollande-Septentrionale</region>
</placeName>
<orgName type="university">Université d'Amsterdam</orgName>
</affiliation>
<affiliation wicri:level="4">
<nlm:affiliation>The University of Luxembourg, Luxembourg Centre for Systems Biomedicine, Luxembourg, Luxembourg.</nlm:affiliation>
<country xml:lang="fr">Luxembourg (pays)</country>
<wicri:regionArea>The University of Luxembourg, Luxembourg Centre for Systems Biomedicine, Luxembourg</wicri:regionArea>
<orgName type="university">Université du Luxembourg</orgName>
<placeName>
<settlement type="city">Luxembourg</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Doroshkov, Alexey" sort="Doroshkov, Alexey" uniqKey="Doroshkov A" first="Alexey" last="Doroshkov">Alexey Doroshkov</name>
<affiliation wicri:level="1">
<nlm:affiliation>The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation.</nlm:affiliation>
<country xml:lang="fr">Russie</country>
<wicri:regionArea>The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk</wicri:regionArea>
<wicri:noRegion>Novosibirsk</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Novosibirsk State University, Novosibirsk, Russian Federation.</nlm:affiliation>
<country xml:lang="fr">Russie</country>
<wicri:regionArea>Novosibirsk State University, Novosibirsk</wicri:regionArea>
<wicri:noRegion>Novosibirsk</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32742779</idno>
<idno type="pmid">32742779</idno>
<idno type="doi">10.7717/peerj.9451</idno>
<idno type="pmc">PMC7369019</idno>
<idno type="wicri:Area/Main/Corpus">000034</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000034</idno>
<idno type="wicri:Area/Main/Curation">000034</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000034</idno>
<idno type="wicri:Area/Main/Exploration">000034</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Subcellular compartmentalization of the plant antioxidant system: an integrated overview.</title>
<author>
<name sortKey="Bobrovskikh, Aleksandr" sort="Bobrovskikh, Aleksandr" uniqKey="Bobrovskikh A" first="Aleksandr" last="Bobrovskikh">Aleksandr Bobrovskikh</name>
<affiliation wicri:level="1">
<nlm:affiliation>The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation.</nlm:affiliation>
<country xml:lang="fr">Russie</country>
<wicri:regionArea>The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk</wicri:regionArea>
<wicri:noRegion>Novosibirsk</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zubairova, Ulyana" sort="Zubairova, Ulyana" uniqKey="Zubairova U" first="Ulyana" last="Zubairova">Ulyana Zubairova</name>
<affiliation wicri:level="1">
<nlm:affiliation>The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation.</nlm:affiliation>
<country xml:lang="fr">Russie</country>
<wicri:regionArea>The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk</wicri:regionArea>
<wicri:noRegion>Novosibirsk</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Novosibirsk State University, Novosibirsk, Russian Federation.</nlm:affiliation>
<country xml:lang="fr">Russie</country>
<wicri:regionArea>Novosibirsk State University, Novosibirsk</wicri:regionArea>
<wicri:noRegion>Novosibirsk</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kolodkin, Alexey" sort="Kolodkin, Alexey" uniqKey="Kolodkin A" first="Alexey" last="Kolodkin">Alexey Kolodkin</name>
<affiliation wicri:level="4">
<nlm:affiliation>University of Amsterdam, Amsterdam, Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>University of Amsterdam, Amsterdam</wicri:regionArea>
<placeName>
<settlement type="city">Amsterdam</settlement>
<region nuts="2" type="province">Hollande-Septentrionale</region>
</placeName>
<orgName type="university">Université d'Amsterdam</orgName>
</affiliation>
<affiliation wicri:level="4">
<nlm:affiliation>The University of Luxembourg, Luxembourg Centre for Systems Biomedicine, Luxembourg, Luxembourg.</nlm:affiliation>
<country xml:lang="fr">Luxembourg (pays)</country>
<wicri:regionArea>The University of Luxembourg, Luxembourg Centre for Systems Biomedicine, Luxembourg</wicri:regionArea>
<orgName type="university">Université du Luxembourg</orgName>
<placeName>
<settlement type="city">Luxembourg</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Doroshkov, Alexey" sort="Doroshkov, Alexey" uniqKey="Doroshkov A" first="Alexey" last="Doroshkov">Alexey Doroshkov</name>
<affiliation wicri:level="1">
<nlm:affiliation>The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation.</nlm:affiliation>
<country xml:lang="fr">Russie</country>
<wicri:regionArea>The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk</wicri:regionArea>
<wicri:noRegion>Novosibirsk</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Novosibirsk State University, Novosibirsk, Russian Federation.</nlm:affiliation>
<country xml:lang="fr">Russie</country>
<wicri:regionArea>Novosibirsk State University, Novosibirsk</wicri:regionArea>
<wicri:noRegion>Novosibirsk</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PeerJ</title>
<idno type="ISSN">2167-8359</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The antioxidant system (AOS) maintains the optimal concentration of reactive oxygen species (ROS) in a cell and protects it against oxidative stress. In plants, the AOS consists of seven main classes of antioxidant enzymes, low-molecular antioxidants (e.g., ascorbate, glutathione, and their oxidized forms) and thioredoxin/glutaredoxin systems which can serve as reducing agents for antioxidant enzymes. The number of genes encoding AOS enzymes varies between classes, and same class enzymes encoded by different gene copies may have different subcellular localizations, functional loads and modes of evolution. These facts hereafter reinforce the complex nature of AOS regulation and functioning. Further studies can describe new trends in the behavior and functioning of systems components, and provide new fundamental knowledge about systems regulation. The system is revealed to have a lot of interactions and interplay pathways between its components at the subcellular level (antioxidants, enzymes, ROS level, and hormonal and transcriptional regulation). These facts should be taken into account in further studies during the AOS modeling by describing the main pathways of generating and utilizing ROS, as well as the associated signaling processes and regulation of the system on cellular and organelle levels, which is a complicated and ambitious task. Another objective for studying the phenomenon of the AOS is related to the influence of cell dynamics and circadian rhythms on it. Therefore, the AOS requires an integrated and multi-level approach to study. We focused this review on the existing scientific background and experimental data used for the systems biology research of the plant AOS.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">32742779</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>28</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">2167-8359</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>8</Volume>
<PubDate>
<Year>2020</Year>
</PubDate>
</JournalIssue>
<Title>PeerJ</Title>
<ISOAbbreviation>PeerJ</ISOAbbreviation>
</Journal>
<ArticleTitle>Subcellular compartmentalization of the plant antioxidant system: an integrated overview.</ArticleTitle>
<Pagination>
<MedlinePgn>e9451</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.7717/peerj.9451</ELocationID>
<Abstract>
<AbstractText>The antioxidant system (AOS) maintains the optimal concentration of reactive oxygen species (ROS) in a cell and protects it against oxidative stress. In plants, the AOS consists of seven main classes of antioxidant enzymes, low-molecular antioxidants (e.g., ascorbate, glutathione, and their oxidized forms) and thioredoxin/glutaredoxin systems which can serve as reducing agents for antioxidant enzymes. The number of genes encoding AOS enzymes varies between classes, and same class enzymes encoded by different gene copies may have different subcellular localizations, functional loads and modes of evolution. These facts hereafter reinforce the complex nature of AOS regulation and functioning. Further studies can describe new trends in the behavior and functioning of systems components, and provide new fundamental knowledge about systems regulation. The system is revealed to have a lot of interactions and interplay pathways between its components at the subcellular level (antioxidants, enzymes, ROS level, and hormonal and transcriptional regulation). These facts should be taken into account in further studies during the AOS modeling by describing the main pathways of generating and utilizing ROS, as well as the associated signaling processes and regulation of the system on cellular and organelle levels, which is a complicated and ambitious task. Another objective for studying the phenomenon of the AOS is related to the influence of cell dynamics and circadian rhythms on it. Therefore, the AOS requires an integrated and multi-level approach to study. We focused this review on the existing scientific background and experimental data used for the systems biology research of the plant AOS.</AbstractText>
<CopyrightInformation>© 2020 Bobrovskikh et al.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y" EqualContrib="Y">
<LastName>Bobrovskikh</LastName>
<ForeName>Aleksandr</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zubairova</LastName>
<ForeName>Ulyana</ForeName>
<Initials>U</Initials>
<Identifier Source="ORCID">0000-0002-0730-9145</Identifier>
<AffiliationInfo>
<Affiliation>The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Novosibirsk State University, Novosibirsk, Russian Federation.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kolodkin</LastName>
<ForeName>Alexey</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>University of Amsterdam, Amsterdam, Netherlands.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>The University of Luxembourg, Luxembourg Centre for Systems Biomedicine, Luxembourg, Luxembourg.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y" EqualContrib="Y">
<LastName>Doroshkov</LastName>
<ForeName>Alexey</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Novosibirsk State University, Novosibirsk, Russian Federation.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>07</Month>
<Day>16</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PeerJ</MedlineTA>
<NlmUniqueID>101603425</NlmUniqueID>
<ISSNLinking>2167-8359</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Antioxidant system</Keyword>
<Keyword MajorTopicYN="N">Antioxidants</Keyword>
<Keyword MajorTopicYN="N">Compartments</Keyword>
<Keyword MajorTopicYN="N">Mathematical modeling</Keyword>
<Keyword MajorTopicYN="N">Plant cell</Keyword>
<Keyword MajorTopicYN="N">Reactive oxygen species</Keyword>
<Keyword MajorTopicYN="N">Systems biology</Keyword>
</KeywordList>
<CoiStatement>The authors declare that they have no competing interests.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>04</Month>
<Day>08</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>06</Month>
<Day>09</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>8</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>8</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>8</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32742779</ArticleId>
<ArticleId IdType="doi">10.7717/peerj.9451</ArticleId>
<ArticleId IdType="pii">9451</ArticleId>
<ArticleId IdType="pmc">PMC7369019</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Photochem Photobiol. 2008 Nov-Dec;84(6):1404-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19067962</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1971 Apr;122(2):225-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5117568</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2013 Aug;162(4):2028-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23800991</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2012 Feb;35(2):454-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21777251</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2005 Sep;222(1):192-200</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15843961</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 Aug;18(8):2051-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16861386</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Jun;141(2):391-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16760493</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2018 Feb;16(2):545-557</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28703378</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1991 Aug;3(8):783-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1820818</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2014 Jul;203(1):32-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24720847</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2004 Jan;120(1):63-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15032878</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2004 Jun;7(3):254-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15134745</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1991 Jul;3(7):737-744</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12324611</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2015 Apr;87(6):555-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25636203</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 Feb;146(2):403-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18065566</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2011 Jan;233(1):1-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20872269</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Food Chem. 2020 Jul 15;318:126483</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32126468</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1994 Mar;5(3):397-405</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8180623</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2016 Mar 17;7:305</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27014325</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2018 Nov 20;29(15):1488-1501</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28699398</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1969 Feb;44(2):242-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16657053</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2015 Mar 15;176:192-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25638402</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2008 Apr;54(2):249-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18208526</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2010 Oct;33(10):1656-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20492555</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 1999 Jul;40(7):725-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10501032</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2011 May;6(5):709-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21448007</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Apr;149(4):1958-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19244456</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 Dec;52(6):1052-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17931347</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2015 Dec 29;15:303</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26715057</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 Nov;52(4):640-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17877712</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Biol. 2020 Jun;124(6):551-561</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32448446</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2016 Jul;171(3):1606-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27208294</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2017 Apr 06;8:510</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28428797</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 1992 Nov 1;298(2):438-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1416975</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 2003 Mar;270(5):921-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12603325</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1990 Jun 19;29(24):5790-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2200516</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Pollut Res Int. 2015 Jan;22(2):1534-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25163559</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Dec;142(4):1364-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17071643</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol Biochem. 2016 Jun;103:10-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26950921</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2013 Jul;32(7):985-1006</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23508256</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protoplasma. 2015 Mar;252(2):461-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25164029</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 1991 May 15;287(1):68-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1897996</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2002 May;53(372):1331-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11997379</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Jun;141(2):357-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16760488</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1983 Apr;157(3):239-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24264153</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2007 Apr;225(5):1255-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17043889</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1985 Oct 25;260(24):12920-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4055727</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Oct 15;279(42):43821-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15292215</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2020 Jan 21;10:1711</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32038683</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2013 Dec;14(12):787-802</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24263360</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1997 Aug 15;16(16):4806-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9305623</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2001 May;126(1):445-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11351106</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Radiat Res. 1996 May;145(5):532-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8619018</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Redox Biol. 2015;4:104-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25545794</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2011;62:515-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21438681</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Mol Biol Plants. 2019 Jul;25(4):865-879</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31402814</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2019 Aug 20;140:28-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30862542</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS J. 2010 May;277(9):2022-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20412056</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2016 Jun;210(4):1344-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26847575</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2004 May;55(399):1105-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15047761</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Syst Biol. 2016 Jan 22;10:11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26797294</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1973 Dec 19;327(2):257-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4360426</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol Biochem. 2010 Dec;48(12):909-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20870416</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 2018 Jun 19;373(1749):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29735738</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2018 Mar 1;28(7):625-639</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29113450</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2008 Oct;56(1):146-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18557835</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2011 Dec;14(6):691-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21862390</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1991 Jun 24;284(2):147-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1647978</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2014;9(12):e976489</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25482750</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2009 Dec 1;47(11):1632-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19765646</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PeerJ. 2019 Nov 29;7:e7791</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31803533</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Jan 27;9(1):e87197</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24475250</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 May 25;96(11):6553-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10339626</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2007 Mar;12(3):125-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17293156</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2009 Jul;21(7):2143-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19638476</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1965 Oct 1;150(3692):72-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5833541</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2010 Apr;138(4):414-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20002601</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Biol Hung. 2016 Jun;67(2):169-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27165528</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol Biochem. 2020 Feb;147:31-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31838316</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2014 Aug 05;14:208</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25091029</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2004 Jan 1;32(Database issue):D438-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14681452</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2002 Nov;32(3):329-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12410811</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS J. 2007 May;274(9):2163-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17419737</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protoplasma. 2018 Mar;255(2):459-469</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28900731</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 Nov 23;96(24):14165-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10570216</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2006 Feb;47(2):304-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16361320</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Crit Rev Biotechnol. 2010 Sep;30(3):161-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20214435</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2015 Nov 19;5:16961</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26581656</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Heliyon. 2020 Jan 06;6(1):e03162</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32042955</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Res. 2002 Feb;36(2):195-202</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11999388</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2017 Jun 07;8:953</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28638395</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2016 Jan 4;44(D1):D746-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26481351</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Life Sci. 2005 Jan;62(1):24-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15619004</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2004 Oct;9(10):490-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15465684</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Aquat Toxicol. 2019 Feb;207:1-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30500560</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Physiol Plant Mol Biol. 1998 Jun;49:249-279</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15012235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2015 Jul;34(7):1109-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25712013</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Semin Cell Dev Biol. 2018 Aug;80:3-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28733165</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Physiol Plant Mol Biol. 2001 Jun;52:561-591</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11337409</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxidants (Basel). 2019 Sep 01;8(9):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31480540</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2012 Jun;63(10):3523-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22467407</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Sci. 2017 Oct;263:55-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28818384</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2013 Sep 20;288(38):27220-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23902771</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Luxembourg (pays)</li>
<li>Pays-Bas</li>
<li>Russie</li>
</country>
<region>
<li>Hollande-Septentrionale</li>
</region>
<settlement>
<li>Amsterdam</li>
<li>Luxembourg</li>
</settlement>
<orgName>
<li>Université d'Amsterdam</li>
<li>Université du Luxembourg</li>
</orgName>
</list>
<tree>
<country name="Russie">
<noRegion>
<name sortKey="Bobrovskikh, Aleksandr" sort="Bobrovskikh, Aleksandr" uniqKey="Bobrovskikh A" first="Aleksandr" last="Bobrovskikh">Aleksandr Bobrovskikh</name>
</noRegion>
<name sortKey="Doroshkov, Alexey" sort="Doroshkov, Alexey" uniqKey="Doroshkov A" first="Alexey" last="Doroshkov">Alexey Doroshkov</name>
<name sortKey="Doroshkov, Alexey" sort="Doroshkov, Alexey" uniqKey="Doroshkov A" first="Alexey" last="Doroshkov">Alexey Doroshkov</name>
<name sortKey="Zubairova, Ulyana" sort="Zubairova, Ulyana" uniqKey="Zubairova U" first="Ulyana" last="Zubairova">Ulyana Zubairova</name>
<name sortKey="Zubairova, Ulyana" sort="Zubairova, Ulyana" uniqKey="Zubairova U" first="Ulyana" last="Zubairova">Ulyana Zubairova</name>
</country>
<country name="Pays-Bas">
<region name="Hollande-Septentrionale">
<name sortKey="Kolodkin, Alexey" sort="Kolodkin, Alexey" uniqKey="Kolodkin A" first="Alexey" last="Kolodkin">Alexey Kolodkin</name>
</region>
</country>
<country name="Luxembourg (pays)">
<noRegion>
<name sortKey="Kolodkin, Alexey" sort="Kolodkin, Alexey" uniqKey="Kolodkin A" first="Alexey" last="Kolodkin">Alexey Kolodkin</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000012 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000012 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32742779
   |texte=   Subcellular compartmentalization of the plant antioxidant system: an integrated overview.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32742779" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020